Stereographic parameters and pseudo-minimal hypersurfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularity analysis of pseudo null hypersurfaces and pseudo hyperbolic hypersurfaces

This paper introduces the notions of pseudo null curves in Minkowski 4-space. Meanwhile, some geometrical characterizations and the singularities of pseudo null hypersurfaces and pseudo hyperbolic hypersurfaces, which are generated by pseudo null curves, are considered in this paper. c ©2016 All rights reserved.

متن کامل

Systolic Inequalities and Minimal Hypersurfaces

We give a short proof of the systolic inequality for the n-dimensional torus. The proof uses minimal hypersurfaces. It is based on the Schoen-Yau proof that an n-dimensional torus admits no metric of positive scalar curvature. In this paper, we give a short new proof of the systolic inequality for the ndimensional torus. Theorem 1. Let (T , g) be a Riemannian metric on the n-dimensional torus. ...

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

Minimal Hypersurfaces with Bounded Index

We prove a structural theorem that provides a precise local picture of how a sequence of closed embedded minimal hypersurfaces with uniformly bounded index (and volume if the ambient dimension is greater than three) in a Riemannian manifold (M, g), 3 ≤ n ≤ 7, can degenerate. Loosely speaking, our results show that embedded minimal hypersurfaces with bounded index behave qualitatively like embed...

متن کامل

Minimal Hypersurfaces with Finite Index

In an article of Cao-Shen-Zhu [C-S-Z], they proved that a complete, immersed, stable minimal hypersurface M of R with n ≥ 3 must have only one end. When n = 2, it was proved independently by do Carmo-Peng [dC-P] and FischerColbrie-Schoen [FC-S] that a complete, immersed, oriented stable minimal surface in R must be a plane. Later Gulliver [G] and Fischer-Colbrie [FC] proved that if a complete, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1936

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1936-1501839-7